samedi 1 décembre 2007
mardi 11 mai 2004
Cosmologie Gémellaire 9: Le temps dans l'univers jumeau. Evolution de G et de c
- Mais le temps de Planck, dans tout cela ?
- ...Celui-ci varie... comme t, c'est à dire qu'il maigrit au fur et à mesure qu'on s'enfonce dans le passé. La barrière de Planck s'éloigne comme un mirage. Quand à la longueur de Planck, elle varie comme R. ...Bien sûr, ce modèle ne gère pas "le reste de la physique". Pour le rendre complet il faudrait adjoindre des variations ad hoc des constantes liées aux autres interactions, forte, faible. Considérons que c'est une idée de plus, à débattre (ce qui est possible, nous le faisons de suite. Pour l'impossible, nous demandons un délai...)
...Le détail de ce modèle est à lire dans l'article [Sur ce site: Geometrical Physics A , 6 , 1998] . Pour mémoire nous donnerons les variations des constantes de la physique en fonction de la variable chronologique t .
...Dans ce qui précède nous sommes partis d'hypothèses purement géométriques, ce qui nous a amené à proposer un système de deux équations de champ, couplées. Nous avons vu que ce système était équivalent au fait d'inverser le signe des masses de la seconde population, bien que les masses m* soient positive.
...Quand on résout ces équations, on donne aux deux métriques des formes particulières, qui ne font que tenir compte de différentes hypothèses. On suppose que la Relativité Restreinte "fonctionne" dans les deux feuillets. Ceci nous amène à choisir une forme particulière de métrique Riemanienne, dite "à signature (+ - - -) ". Puis nous supposons que ces deux univers sont homogènes (que les paramètres, pression, densité, sont les mêmes en tout point de l'espace) et isotropes (que l'apparence de l'univers est la même quelle que soit la direction vers laquelle on se tourne. A l'aide de ces métriques particulières nous pouvons exprimer les tenseurs S et S* puis résoudre les équations, en obtenant en fin du compte des équations différentielles permettant de définir les évolutions de R et de R*, "facteurs d'échelle" des deux univers.
...On fait de même dans la théorie standard, sauf qu'on a une équation de champ unique, l'équation d'Einstein, une seule métrique et qu'on aboutit au bout du compte à une seule équation différentielle. C'est la célèbre équation de Friedmann :
...En fait, rien dans notre physique ne nous permet de faire la différence entre le passé et l'avenir. Quoi qu'on fasse on est toujours ramené à une conceptionsubjective du temps. Seuls nos sens nous permettent de faire la différence entre le passé et le futur.
...Une surface possède des géodésiques. Mais il n'y a pas de sens de lecture pour celles-ci. Le choix du sens du temps est arbitraire.
...Les équations différentielles couplées (équations (37-a) et (37-b) du papier [Geometrical Physics A , 6 , 1998] sont également invariantes quand on change t en - t.
...En remontant en amont, on sait qu'on peut repérer deux points conjugués M et M* de nos deux hypersurfaces avec le même jeu de coordonnées. Appelons ces coordonnées (t , z , x , h). On peut alors mener le calcul jusqu'au bout et obtenir les deux équations différentielles finales, couplées (écrivons-les) :
A ce stade je peux très bien décider que : t = t t* = t
ou que : t = t t* = - t
...Les équations ne définissent aucune orientation temporelle a priori, pas plus que ne le faisait l'équation de Friedmann. Mais alors, que signifient ces variables tet t* ?
Ajout en date de février 2000 :
Entre le moment où j'avais composé ce texte et aujourdh'ui se sont situés tout un lot de travaux nouveaux concernant les trous noirs (ou plutôt allant dans le sens de leur inexistence). A la lueur de ces travaux, je dirais maintenant que les grandeurs t et t* ne sont que des coordonnées, et rien d'autre. Le fait qu'on décide par exemple que t* = -t ne signifiera absolument pas que si on passe du feuillet F au feuillet gémellaire F* on va se mettre à vivre "à rebrousse-temps". Dans ces nouveaux travaux ainsi évoqués on s'intéresse tout particulièrement à la manière dont les deux feuillets pourraient se trouver mis en communication (pendant un très bref instant, le temps d'un transfert hyperspatial de matière du feuillet F au feuillet F*). Qu'arrive-t-il alors à cette matière qui s'échappe vers "le versant rétrochrone de notre univers" ? Chemine-t-elle à contre-temps ?
...Elle évolue dans le feuillet F* où la coordonnée temps se trouve inversée. Mais en transitant d'un feuillet à l'autre, une masse témoin a suivi une géodésique. Sa "montre de bord" (c'est à dire son temps propre" continue de progresser vers le futur. Qui plus est cette particule témoin pourrait théoriquement réemerger dans F après avoir effectué un trajet en empruntant "les couloirs du gémellaire". Serait-ce à dire que cette pérticule témoin pourrait réemerger avant d'être partie?
...Non pas. A aucun moment son cheminement n'a été "rétrochrone". Mais alors, quelle est la nature ontologique de cette inversion du temps. Attention, il ne s'agit que de l'inversion de la coordonnée temps, pas du temps propre. En s'inspirant des travaux de Souriau (Structure des Systèmes Dynamiques, 1974, Dunod, page 198, équation 14.67) on sait qu'inversion de la coordonnée temps et inversion de la masse (et de l'énergie) sont des phénomènes conjoints. L'inversion du temps résulte de l'action des "composantes antichrones du groupe de Poincaré". Quand à l'inversion de la masse et de l'énergie elle découle de l'action du groupe sur son espace des moments.
...Ainsi "cheminer pendant un temps dans un feuillet où la coordonnée temps t* est inverse de la nôtre" signifie simplement que pendant ce temps où elle est "en plongée dans le jumeau" une masse témoin m contribue négativement au champ de gravité (relatif au particules restées dans son feuillet d'origine).
Iinverser le temps équivaut à inverser l'énergie et la masse.
Nous avons vu que nos particules de matière-fantôme se comportaient comme si elles possédaient une masse négative. On peut dire que si deux particules qui interagissent ont des masses positives, mais des flèches du temps inverses, elles se repoussent, gravitationnellement. Dans le papier : J.P.Petit and P.Midy : Geometrization of antimatter through coadjoint action of a group on its momentum space. 3 : Twin group. Matter anti-matter duality in the ghost space. Reinterpretation of the CPT theorem. [Sur le site: Geometrical Physics B, 3 , 1998.] nous avons tenté de dégager la structure de groupe qui sous-tendait cette géométrie gémellaire. Nous sommes arrivés à la conclusion que les deux feuillets étaient liés par des relations de symétrie et qu'en particulier leurs flèches du temps étaient opposées. On rejoint alors l'idée initiale d'André Sakharov et sa théorie des univers gémellaires.
Cosmologie Gémellaire 8: L'horloge dans le modèle à constantes variables. Le temps c'est l'horloge
- Une théorie alternative pour la structure spirale.
...Ce modèle fournit une nouvelle vision de la structure spirale, en l'imputant à l'interaction entre la galaxie et son environnement de ghost matter. La théorie de Françoise Combe se fonde sur l'interaction entre deux population: la matière de la galaxie et une masse d'hydrogène froid, indétectable et d'origine non précisée. A noter qu'un modèle d'interaction, à deux populations, avait déjà été suggéré en 1986 dans ma bande dessinée Mille Milliards de Soleils, Ed. Belin.
...Nous avons effectué des essais à travers des simulations 2d. Voir : J.P.Petit and F.Landsheat : Matter ghost matter astrophysics. 6 : Spiral structure. [ Sur ce site: Geometrical Physics A, 9 , 1998.]
...Inutile de doubler les images. Si faire se peut nous intégrerons sur le site l'animation, très suggestive, montrant la naissance d'une galaxie barré. On a deux régimes. D'abord une friction dynamique avec un fort ralentissement de la galaxie. La barre se forme très vite, de même que les bras spiraux. Le ralentissement devient alors insignifiant. Le système perdure alors pendant un grand nombre de tours, sa source étant l'effet de marée. Voir la suite des figures, dans l'article cité. Bien sûr, ces résultats doivent être accueillis avec circonspection, puisqu'il ne s'agit que de résultats 2d. Mais nos moyens de calcul ne nous permettent pas de faire du 3d. Si une équipe se proposait pour prendre le relais nous serions tout disposés à leur donner toutes les indications techniques nécessaires....Dans les simulations "classiques" le problème est d'assurer la survie des bras spiraux. Le phénomène correspond, de toute façon, à une dissipation d'énergie. Les éléments de la galaxie, les "étoiles", acquièrent donc des vitesses importantes, ce qui entraîne la disparition de la structure spirale, qui devrait donc être reconstituée par un nouvel apport de gaz froid, par exemple.
...Dans notre modèle il semble que l'environnement de ghost matter fasse office de "barrière de potentiel" et empêche ces objets de s'évader. La galaxie conserve alors ses bras spiraux pendant un grand nombre de tours. Mais ceci nécessiterait une confirmation en 3d.
...Comme évoqué plus haut, nous avons deux nouveaux collaborateurs au travail sur ces questions de simulation et nous espérons beaucoup de ces nouveaux travaux (la séquence montrant la naissance des bras spiraux dans une galaxie date de 1994...). La puissance de calcul des nouveaux matériels, accessibles à de simples particuliers, permet de "jouer dans la cour des grands" avec un simple micro. On peut même gérer assez de "points-masses" avec de tels systèmes qu'on pourra très vite représenter les galaxies telles qu'elles sont vraiment, c'est à dire avec deux "populations", fort différentes sous différents aspects :
- La "population I, ou population halo, constituée par des vieilles étoiles (et des amas globulaires), dont les trajectoires s'éloignent sensiblement du plan équatorial.
- La "population II" ou population disque, regroupant, dynamiquement, les jeunes étoiles et des masses de gaz d'importances variables. Ce second ensemble de masses se localise très près du plan équatorial de la galaxie. C'est dans cette population que se créer la structure spirale, en tant "qu'onde de densité". C'est alors un phénomène très non linéaire, qu'on peut même assimiler à une "onde de choc".
...Par contre le phénomène structure spirale affecte relativement peu la population I, qui concentre pourtant 90 % de lamasse de la galaxie. Il sera extrêmement intéressant de pouvoir enfin coller de plus près à la réalité astrophysique en représentant la galaxie, non à l'aide d'une unique population de points-masses, mais de deux.
La phase radiative.
Ici, nous revenons aux aspects cosmologiques du modèle. Comme évoqué plus haut, la solutions à départ linéaire (où R et R* au voisinage de t = 0, croissent proportionnellement au temps) pose problème. Une telle expansion serait beaucoup trop douce pour assurer le figeage de la nucléosynthèse primordiale. On a donc été amené à faire le lien avec des travaux antérieurs, datant de 1988-1989, intégrées au site:
J.P.Petit, Mod. Phys. Lett. A3 (1988) 1527
J.P.Petit, Mod. Phys. Lett. A3 (1988) 1733
J.P.Petit, Mod. Phys. Lett. A4 (1989) 2201
et avec :
J.P.Petit : Twin Universe Cosmology : Astronomy and Space Science 226 : 273-307, 1995 and [Voir sur le site: Geometrical Physics A , 2.]
...L'idée consiste alors à supposer que les constantes de la physique dépendent de la densité d'énergie. Dans les travaux antérieurs on avait montré que des variations conjointes des constantes de la physique pouvaient être envisagées, laissant invariantes toutes les équations de la physique (l'équation de champ, Schrödinger, Maxwell, etc...). Nous suggérons qu'un tel modèle puisse s'appliquer alors à la phase radiative, lorsque l'énergie-matière se trouve principalement sous forme de rayonnement.
...Lorsqu'on remonte vers le passé, la densité d'énergie-matière croît. On débouche, lorsque rr >> rm (lorsque la densité d'énergie-matière sous forme de rayonnement est grande devant la densité sous forme de matière) sur des lois :
...Avant de décrire ce modèle plus en détail, donnons-en la justification. On a vu plus haut que la remarquable homogénéité de l'univers primitif, traduite par celle du fond de rayonnement à 2,7°K, était difficilement justifiable dans un contexte standard. Il a donc fallu greffer sur l'ancienne théorie du Big Bang un nouveau modèle : l'inflation. Pour les français, ce mot est assez mal traduit. Il vient du verbe anglais to inflate, qui veut dire se gonfler. On est donc amené, au prix d'hypothèses lourdes, à supposer que l'univers aurait subi une fantastique expansion dans son "tout début". Alors son homogénéité peut être justifiée. Mais il est à noter que c'est la seule justification observationnelle du modèle de Linde, de cette théorie de l'inflation. Le prix à payer reste relativement élevé.
...Ici nous envisageons que les constantes de la physique puisse dépendre de la densité d'énergie matière, au delà d'un certain seuil. Ca n'est pas pire que les hypothèse qui sous-tendent la théorie de l'inflation, à tout prendre. Mais le profit est alors double :
- On justifie l'homogénéité de l'univers primitif
- On obtient une redéfinition de la variable temps.
...Pour l'homogénéité, c'est assez simple. On a vu que dans le modèle standard, à c constant, tout se joue en comparant l'horizon ct à la distance moyenne entre les particules.
Une remarque en passant :
...Pendant pas mal d'années, nous avons été "les olibrius qui s'amusaient à faire varier les constantes de la physique", thème de recherche qui n'avait absolument pas été pris au sérieux en France, en particulier dans les cénacles du CNRS. Beaucoup trouvaient l'idée parfaitement absurde "dans la mesure où les observations permettaient d'affirmer que ces constantes ne pouvaient pas avoir varié de manière sensible au fil des milliards d'années".
...On comprend une telle attitude, car il est vrai qu'aucune expérience ou observation n'a pu démontrer une telle variation d'un quelconque constante de la physique. Nous sommes bien d'accord. Mais en fait, la question est mal posée. Dans les travaux que nous avons développé depuis 1988 il a toujours été question de variations conjointes des constantes de la physique, des variations qui laissaient en particulier invariantes... les équations de la physique. Or tout expérience s'appuie sur de telles équations. Si les équations sont invariantes, alors le "phénomène" ne pourra pas être mis en évidence, simplement parce que les instruments de mesure "dérivent parallèlement au phénomène que l'on veut mettre en évidence".
...Donnons une image pour illustrer ce propos. Imaginez que vous mesuriez la longueur d'une table en fer avec une règle en fer. Vous trouvez une longueur constante. Est-ce à dire que la table garde une longueur constante ? Pas nécessairement. La température ambiante dans le laboratoire pourrait varier, phénomène que vous ne pourriez mettre en évidence à travers une dilatation de votre table en fer, simplement parce que votre instrument de mesure, votre règle de même métal, se dilate avec l'objet dont il est censé mesurer la longueur !
...Si rien n'est mesurable, me direz-vous, alors où est l'intérêt ? Comme montré dans nos travaux (y compris dans l'article publié avec Pierre Midy en août 1999 dans The International Journal of Physics D, intitulé "scale invariant cosmology" (cosmologie invariante par changement d'échelle, les observables sont de deux natures :
- Le redshift
- La prédiction de l'homogénéité de l'univers primitif.
...Venons-en au temps. Nous avons dit plus haut que le choix des coordonnées était arbitraire. Peut-on imaginer une mesure du temps qui soit invariante par changement des coordonnées ?
Nous l'avons sous les yeux. C'est le système solaire qui, lui, est parfaitement physique. Que nous la mesurions en nanosecondes ou en siècles, le nombre de révolutions de la Terre autour du soleil, par rapport à l'arrière-plan stellaire reste le même : c'est un nombre .
...Partant de ce constat nous allons donc imaginer une horloge conceptuelle constituée par deux masses orbitant autour de leur centre de gravité commun.
Lorsqu'on remonte vers le passé, nanti de cette horloge conceptuelle, la question à poser est :
- Combien de tours ce système a-t-il fait sur lui-même dans le passé ?
Dans notre modèle la réponse est : une infinité de tours.
...Si on retient donc ce compteur de tours comme horloge, le passé de l'univers devient infini. La singularité originelle est éliminée. On notera au passage que ce nombre de tours se trouve être
c'est à dire précisément ce temps conforme cher à Lévy-Leblond.
Autre remarque, dans ce modèle qui, dans sa phase radiative, devient "à constantes variables" cette quantité s'identifie également à l'entropie par baryon. Le cosmos devient non-isentropique. Le second principe revisité, en quelque sorte (le modèle standard nous offre une évolution isentropique).
...Cette vision du cosmos nous évite de nous demander "ce qui existait avant le Big Bang". L'adverbe avant devient de plus en plus vide de sens à mesure qu'on s'enfonce vers le passé.
...L'univers est une histoire qui se déroule "sous nos yeux". En quelque sorte, c'est un livre ouvert. Si vous allez voir un éditeur, pour publier un livre, il ne vous demandera quelle est l'épaisseur de votre manuscrit. En signant le contrat vous pourriez lui jouer un mauvais tour en lui soumettant un document dont les pages auraient une épaisseur variable. En ouvrant le livre à une page qui s'intitulerait "présent" et en le feuilletant à rebours, il pourrait découvrir avec désagrément qu'ayant utilisé des feuilles de plus en plus fines, vous lui présentez un livre qui contient un nombre de pages... infinies et qu'il n'aura jamais la moindre chance de lire votre préface pour savoir ce que vous avez voulu dire dans cet ouvrage.
Un éditeur prudent, désireux de s'éviter un tel désagrément, demandera donc à l'auteur :
- Combien votre ouvrage comporte-t-il de caractères ?
Dans le cas de cet ouvrage "univers", la réponse, du moins en ce concerne le passé, serait : l'infini.
...En remontant dans le passé on compterait simplement une infinité d'événements microphysiques. Ceci constitue donc notre réponse à la question "des origines". Elle est bien différente des réponses que certains élaborent de nos jours. Voir à ce propos la déclaration faite par notre tout jeune académicienThibaud-Damour à la revue Science et Vie, au rayon "Galerie de Portraits", à propos de sa théorie du "préBig-Bang", fondé sur une théorie qui en trente année n'a jamais été capable de fournir la moindre chose, tant au plan des observations que sur le terrain de l'expérience, j'ai nommé la TOE, la "théorie de tout", alias la "théorie des supercordes"
S'abonner à :
Messages (Atom)